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Synopsis 

There are two types of anomalous diffusion of vapors in solid polymers which are held to be due 
to swelling. If the latter is seen as strain, then there must be an accompanying stress which can affect 
the nature and magnitude of diffusion. The theories of diffusion in polymers are examined in light 
of the network theory of Larch6 and Cahn. Their formalism is used to solve permeation and sorption 
in polymer membranes to illustrate the general features of the elastic effects, particularly the 
time-dependent nature of the solubility. That “anomalous” effects will be present is without doubt, 
considering the concurrent nature of the added elastic effects. However, the present calculations 
fail to unearth any behavior similar to the case I1 diffusion. An order of magnitude estimate has 
been provided which shows that the effects of elasticity are usually significant in rubbery or amor- 
phous glassy polymers where the anomalous effects occur. 

INTRODUCTION 

It has long been known that the diffusion of gases and vapor through a polymer 
membrane gives rise to swelling effects, sometimes so severely as to cause cracking 
and crazing. It is also speculated that swelling changes the diffusivities and 
solubilities, hence giving rise to a two-step sorption isotherms.1,2 Here the first 
step is due to diffusion, which gives rise to a quick equilibration, and the second 
step is due to a drift caused by a changing solubility in a swollen polymer. The 
model explained quantitatively the sorption isotherms, where the rate terms, 
i.e., diffusivity and the rate of change of solubility, were determined from inde- 
pendent postulates. 

The above constitutes a case of anomalous diffusion. Others were soon 
identified,3 the most conspicious case being that where the solute enters the 
polymer not as a smooth profile, but (nearly) as a sharp shock front; this is the 
well-known case I1 diffusion. Here it is postulated that behind the shock front 
is a swollen gel and dry polymer ahead of it. A t  the front the dry polymer is 
converted into swollen gel by the action of osmotic pressure. The mechanism 
is popularly postulated and is considered almost a certainty, as noted in a re- 
view.4 

Proceeding along these lines, it is noted that the swelling can be viewed as a 
strain. It is well known that the strain or the rate of strain are connected to the 
stresses in the system through what are known as the constitutive equations. 
The stress is identified as the osmotic pressure. However, the formulation is 
yet incomplete, even though these models ostensibly explain the case I1 diffu- 
 ion.^ 

Invocation of stress or forces requires two equations to be satisfied: the 
constitutive equation had a force balance equation as noted by Larch6 and Cahn.6 
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The theory of how swelling may affect diffusivities are not confined to polymers; 
alloys and geological systems are affected as well. It is important to recognize 
the special nature of matrix in which the solute penetrates: The notion that the 
polymer (or other) molecules are arranged spatially with respect to one another 
remain intact, even when the penetration of the solute distorts such an ar- 
rangement.7 Such solutions are interstitial solutions, in contrast to the con- 
ventional solutions which are substitutional.s In contrast to considering the 
solid matrix as a network,&ll one has also the cage or free volume theories of 
diffusion in polymers now in ~ o g u e . ~ ~ J ~  Bueche14 suggests that the matrix may 
be approximated as a relatively well-defined cells, occupied by the molecules. 
The diffusion takes place by jumps, with an activation energy equal to the energy 
of evaporation. More realism is infused into the model by incorporating the 
fluctuation of the free volume (cell volume). This affects diffusion since it is 
less probable for a diffusing molecule to enter a small cell. This constitutes the 
extrapolation of an earlier suggestion by Barrer15 that diffusion takes place 
through the cooperative motion of the polymer molecules, which is taken here 
to give rise to a fluctuation in the cell volume distribution. Cohen and Turnbull16 
look into the fluctuations of free and occupied cells as a whole and to trace the 
drift of occupied cells instead of cell to cell migration over activation energy 
barriers in the previous model. Larch6 and Cahn8 assume the matrix to be a 
network and it in place. The changes in free energy due to the changes 
in the permeant solute content is simply pop dc, where p o  is the molar volume 
and, since in this case the permeant solute concentrations are low, in view of the 
network model is approximately the monomer concentration. p and c are the 
chemical potentials and the mole fractions of the permeant solute in that par- 
ticular medium. One has in this interstitial solution model 

duo = u:dE + T dso + pop dc 

where uo and SO are the internal energy and the entropy of the system per unit 
original volume VO. The u and E represent the stress and strain tensors. Ob- 
vjously the change in the energy of the polymer is due to the work term a:dE of 
distortion of the network. [For a fluid u = PI, where I is the unit tensor. Hence 
u:dE = p d  tr(E), where tr represence trace. Further, as tr(E) = AV/Vo, a:dE 
reduces to the familiar p dVIVo term in fluids.] A substitutional solution en- 
tertains the possibility that the units of the network can be replaced by the 
permeant molecules; hence 

duo = u:dE + T d s o  + po(p1 d c l +  p 2  dc2). 

For the present purposes the interstitial solution is the appropriate model. It 
is noteworthy that, although the model is a discrete one, all formulations used 
here are continuum. 

Larch6 and Cahn6 also point out that on sorption by vapor an equilibrium is 
reached, which is characterized by an equilibrium stress (which is chosen by 
Thomas and Windle5 to be the osmotic pressure) and an equilibrium strain or 
swelling. That is, the deformation cannot be without limits as it will turn out 
to be if the stress is related to the rate of strain through a viscosity relation as 
done by Thomas and Windle. Instead an elasticity relation applies. The 
equations to be solved therefore are: 
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(1)  
dC conservation - = -V . j 
dt 

(2) 
Dc 

constitutive j = - - RT vp 
force balance 0 = V - u 

constitutive u = f (Em),  
(3) 

(4) 

where Em is the strain due to mechanically applied forces. The strain due to 
swelling is given by 

Ec  = l/3 tr(Ec)I ( 5 4  

where tr(Ec) = AVc/Vo and eq. (5a) is conventionally rewritten as 

E C  = qAcI (5b) 
where q is the appropriate coefficient of linear expansion which is taken to be 
small and evaluated at  c = CO. The Ac represents c - CO. The two strains E m  
and E C  are additive, 

E = E m + E C  (6) 

and are related to the displacement u by 

E = '/~[VU + (VU).] (7) 
where the superscript T denotes the transpose. Finally, the compatibility 
condition on E is 

V X E X V = O  (8) 

Here, the body forces in eq. (3) have been neglected, and it has been assumed 
that the elastic modulii are sufficiently large such the stress field equilibrates 
instantaneously compared to the concentration field. 

Larch6 and Cahno show that if the linear relation 

S:u = E m  

holds exactly, then the relation 

holds exactly. The fourth-order compliance tensor S in this case can be re- 
written in the form of constitutive equation (41, linearized to 

u = - E [.- +- V tr (E ")I] 
l + v  1 - 2 v  

Note that eq. (9) is Hooke's law, the more general form for (ll), Young's law. 
Substituting eqs. (6) and (5b) into (111, one has 

I 
EqAc E-- u =  tr(E)I + - 

( 1  + v ) ( l  - 2v) l + v  1 - 2 v  
vE E 
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and the compatibility equation expressed in terms of stress becomes 

(1 + v)V2u + VV tr(a) + Ey 

On contraction Eq. (13) becomes 

Larch6 and Cahn17 have generalized the previous results for large deforma- 
tions. Here the small deformation theory will be used since that allows one to 
linearize the constitutive equation (4); the linearity of eq. (4) is an important 
assumption made by here. A short compilation of the effective Young’s modulus 
E and Poisson’s ratio v has been given by Haward,18 which are the two parameters 
obtained on linearization. 

If the effect of concentration on the compliance tensor is neglected, then eq. 
(10) becomes 

1-40,~) = ~ . ( o , c )  -  PO) t r ( 4  (15) 
Thus eqs. (11431, (13), and (15) are the final equations supplied by them.6 

The boundary value problems to be solved here are those of sorption and per- 
meation vapors in polymeric membranes. The particular point under consid- 
eration is to see as to what kind of anomalous diffusion is predicted. If the 
prediction compares well with the known data, then the anomaly-through- 
swelling theory discussed earlier is correct. If not, then an essentially irreversible 
phenomenon gives rise to the a n ~ m a l y . l ~ - ~ l  

FORMULATION OF THE BOUNDARY VALUE 

The problem consists of solving eq. (3). The solution must also satisfy the 
compatibility equation (13). As the mole fraction c is not known beforehand, 
it becomes a very difficult problem. A general solution for an infinite flat plate 
with no forces acting on the boundaries has been given by Goodier.22 The so- 
lution provides u in terms of the unknown mole fraction c, and clearly shows that 
tr(a), which appears to be a part of the chemical potential in eq. (15), makes the 
latter dependent on the gross geometry and the boundary conditions. Larch6 
and Cahn6 point out that then the constitutive equation for the flux, eq. ( a ) ,  is 
not a local law anymore. 

Traction free membranes cannot be found. One may, however, assume that 
such tractions, say the vapor pressure p on the two sides of the membrane in the 
sorption case, are sufficiently small compared to the swelling stresses generated. 
It also makes it necessary to define a reference mole fraction CO, where the swelling 
stresses in a traction free membrane vanishes. The solution to eqs. (3), (13), and 
(14) is given as 

Ll2 12 L/2 
gxx = a,, = rlE (- Ac + J L 1 2  Ac dz + 5 z JL,2 z Ac dz) (16) 

1 - v  
and czz = 0, where the coordinate system has been explained in Figure 1. One 
observes that the stresses generated are indeed of an osmotic pressure type, al- 



DIFFUSION OF VAPORS THROUGH POLYMER MEMBRANES 735 

Fig. 1. Geometry of the membrane showing the coordinate system used. 

though not completely so. The Ac represents c - co and is a function of z alone. 
Equation (16) yields 

122 L D  
tr(a) = - 2qE ( - Ac + - J:;: Ac dz + ~3 JL12 zAc dz) (17) 

1 - V  

Because of the symmetry both eqs. (13) and (14) reduce to 

2Eq Ac = o  1 dz d z [  1 - v  
- tr(a) + - 

The solution is 

tr(a) = A ( t )  + B(t )z  - 2EqAc/(l - v) (19) 

which agrees with eq. (17). 
Combining eqs. (2), (151, and (17), one has 

Here it has been assumed that 

p ( 0 , c )  = p o  + RT In yc 

where po is a reference potential and y is the activity coefficient. It entails 
measuring properties at zero pressure, which cannot be done, or measuring then 
a t  the working pressure p and ignoring the difference as small. Thus the role 
of sorption pressure or the permeation pressures on the stress effect are neglected 
in solving both the elasticity problem and in the thermodynamic calculations. 

When the membrane faces are exposed to the reservoirs where the chemical 
potential remains constant, one has 

122 
[Ac - J::f Ac dz - - 2q2E 

PO(1 - v) p~ - po = RTln  y c + 
(22) 

where p~ is the reservoir potential. Thus as c changes with time, the concen- 
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tration at  the interface changes with time. If c ,  is the equilibrium mole fraction, 
then eq. (22) becomes 

~ . L R  - po = RT In y c ,  (23) 

on assuming that c and c ,  are not too far apart such that the same value of y can 
be used. Substituting into eq. (22) and simplifying for small differences, the 
solubility is given by 

It becomes very intriguing at  this point to find out if there exists a relation 
among c,, co and the elastic coefficients. One would have assumed that eq. (22) 
would yield such results, but it does not, i.e., at equilibrium it yields eq. (23) which 
does not relate c ,  to CO. As explained by Larch6 and Cahn,G the form of eq.(22) 
varies with the geometry of the sample, i.e., different systems like a semiinfinite 
system, flat plates, etc., will have different expressions. The key equation is eq. 
(15), which unifies different geometries. The reason why specific forms under 
different geometries vary is that the force balances are met differently, i.e., Q 

varies. For a semiinfinite system, Goodier's methodz2 yields tr(u) = - [2Eq/(l 
- v)]Ac. The solution is also valid for a doubly infinite system and yields, instead 
of eq. (22), 

at  equilibrium. This equation can be rewritten as 
2Eq2 

Po(1 - v) 
p~ = po + RTln y c ,  + AC m 

and, consequently, 

Thus for small values O f  N E ~ ,  c ,  is dependent both on N E ~  and CO. However, for 
large values of N E ~ ,  c m  N co. 

Fl~ry ,~- l '  using the theory of rubber elasticity, gives a more complete relation 
among the various quantities. It is seen there that the elastic strain energies 
vanish when the volume fraction of the polymer is about 0.67. That is, co is in- 
dependent of c ,  and N E ~ .  

The shortcoming of Flory's formalism for the present purpose becomes ap- 
parent from the fact that it is valid only for an infinite system and an equation 
such as eq. (22) cannot be derived. It is this equation which one requires to solve 
as the appropriate problem for the membrane. Thus, although Flory's theory 
is appropriate for polymers, it is inappropriate when it is used for mem- 
b r a n e ~ . ~ ~  

For the small concentrations of the penetrant molecules the activity coefficient 
y can be approximated as y,, that at  infinite dilution. As a consequence b In 
y / b  In c N b In ymld In c = 0. Equations (20) and (24) become 

L/2 
ZAC dz (25) 24v2EcD 

p&3RT(1 - Y) JL/~ 
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and 

(26) 
The assumption would imply that the terms quadratic in c are neglected. 
However, that cannot be done since these are all multiplied by the Young's 
modulus E ,  which is a large quantity. [In fact, it has been assumed to be suffi- 
ciently large such that the stresses are always balanced: the reason behind the 
fact that the unsteady state terms are neglected in eq. (3).] Thus with eqs. (25) 
and (26) the boundary value problems are ready to be posed. 

STEADY STATE PERMEABILITY 

In this problem the flux jz is a constant. The nonlinear, implicit equation (25) 
is still difficult to solve. Nondimensionalizing, one hasp = jz/(D/L), { = z/(L/2), 
an elasticity number N E ~  = 2q2E/RTpo(l - v), and, eliminating CO, 

(27) 
dc  

- p  = 2(1 + NElc) - - Q N E ~ C X  
di- 

where 

(28) 

The boundary conditions 

C I + - 1  = c1 

and 

apply. Integrating (27), one has 

and 

Equations (28), (31), and (32) are sufficient to obtain the permeabilities. One 

(33) 

has explicit solutions 

c = c1 - 1/2 (c1 - c2) (1 + n 
and 

P / ( C l  - c2) = 1 (34) 

In dimensional form the left-hand side in eq. (34) isjzL/D(cl - cz), and hence 
eq. (34) represents classical permeation. From eqs. (17) and (33), one has tr(a) 
= 0; since czz = 0 and cxx = a,,, cxx = a,, = azz = 0. Substituting tr(a) = 0 in 
Eq. (15) shows that the solubility is classical, i.e., c1 = cl,, and c2 = ~ 2 , ~ .  Thus, 
one finds that the steady state permeation is classical. Numerical methods were 
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used to determine if other solutions were possible; however, they all converged 
to eqs. (331434). 

SORPTION WITH A SOLUBILITY DRIFT 

As mentioned earlier, according to some investigators, an anomalous effect 
is observed in the sorption experiments. The diffusion there is classical, but 
the solubility changes with The unsteady state equation for sorption 
is obtained on combining eqs. (1) and (25 ) ,  

RTpo(1 2r2EC - v) I4 dz 
-=.-[[I ac d + 
dt dz 

and the solubility is on eliminating co 

where from symmetry condition 

(35) 

Nondimensionalizing eqs. (35) and (36), with 7 = 4Dt/L2, [ = z / ( L / 2 ) ,  and N,g 
= 2r2E/RTpo(l - v), one has 

subject to 

One important feature that can be determined from eq. (38) is if it can predict 
a profile which is discontinuous or near-discontinuous, as appropriate for the 
case I1 diffusion. Second-order partial differential equations can be written 
as 

augf + Zbug, + cu,, + dui + eu, + fu = g 

where the subscripts indicate partial differentials and u is a function of 7 and 
4. Equation (38) can be written as 

(l + NEJ!u)uf( + (NEluf )uc  - uT = O, 
and on comparison yields b 2  - ac = 0, irrespective of whether N E ~  is large or 
small, or u positive or negative. The conclusion is that eq. (38) remains a par- 
abolic equation under all conditions, and, since only the solution to a hyperbolic 
equation can show dis~ont inui ty ,~~ case I1 will not be predicted here. 

The case of small values of N E ~  is dealt with in the Appendix. The behavior 
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is near-Fickian but with a changing solubility with time. The result in dimen- 
sional form for the solubility is 

8 m e - (2 f l+1)2~2~ /4  
- I - -  c (42) 

c - c(0) 
c, -c(O) 7 9  n=O (2n + 1)2  

where c(0) is the solubility a t  7 = 0. 
The case for large N E ~  is treated in the Appendix. It provides somewhat 

strange results: To the first approximation, the concentration is same every- 
where but changes with time. This is also its time-dependent solubility, given 
by 

and c = c, if ci is zero as explained in the Appendix. At 7 = 0, c is ci. As men- 
tioned previously c, = co at large values of N E ~ .  

Considering the parabolic nature of eq. (38), one may define an average value 
for the effective diffusivity D [ 1 + NEIC]  as D [ 1 + NEI (c  ) 1, as discussed else- 
where.25 Equation (38) becomes 

bc b 
- = - [(l + N E ~ ( c ) )  4 a7 ac  (44) 

subject to eqs. (40)-(41) and an unknown solubility c I +*I= 4(7). The solution 
with Laplace transforms is well known25; one obtains 

where a = [p / ( l+  NEI ( c )  )Ill2, p is the variable of transformation, and the ov- 
erbars indicate transformed quantities. Taking the Laplace transform of eq. 
(39) and substituting eq. (45), one has 

Inverting eq. (46) with Heaviside formula, one has 

where the tfl are the infinite roots of 

The solution is valid for all values of N E ~ .  

RESULTS AND DISCUSSION 

Before commenting on the results obtained here, it is important to assess the 
role of elasticity in diffusion in general. In the problem posed here its magnitude 
is governed by the dimensionless quantity 2772E/p&T(1 - Y). For polymer 
density -1 g/cm3 and the molecular weight of the repeat units -20, po -0.05 
mol/cm3. E - 10l1 dyn/cm2, Y - 0.3, and 7 - 0.1 for glassy p0lymers,l5.~ and, 
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at  300"K, 2q2E/p&T(1 - v) - 2, a significant quantity. For rubbery polymers 
q could be higher, say -1.0, but E is lower -los dyn/cm2 and the figure is 
-0.2. 

The distinctive features of the elastic effects are listed below: 
(a) The nature and the strength of the effects vary from one geometric con- 

figuration to another.6 The aspects of thin membrane have been discussed 
here. 

(b) The effects also vary if the concentration profile is symmetric or asym- 
metric, e.g., there is a symmetry in the sorption case. Further, the stresses vanish 
at  equilibrium and at steady state, irrespective of the above consideration. The 
stresses exist only under unsteady state conditions. 

(c) Anomalous effects observed in sorption is that of time-dependent solu- 
bility, the effective diffusion is Fickian. The results appear to explain some of 
the known experimental data.lT2 It is noteworthy that only an effective diffu- 
sivity can be obtained from sorption studies but exact values can be obtained 
from the permeation experiments. 

(d) Case I1 cannot be explained with the swelling effects as formulated 
here. 

One of the questions raised here has not been answered fully, viz., the nature 
of the relation among CO, c , ,  and N E ~  in membranes. The relationship can be 
found for an infinite or a semiinfinite system; however, whether they apply to 
membranes is not known. It is noteworthy that such a relation is needed only 
under unsteady state conditions; at steady state or a t  equilibrium, c, is unaf- 
fected by co or N E ~ .  

CONCLUSIONS 

Larch6 and Cahn6 have shown that the coupling between a concentration field 
and a stress field is strongly governed by the nature of the boundaries. Specific 
solutions have been obtained here for a membrane under conditions of steady 
diffusion. Anomalous effects are found mainly in the form of time-dependent 
solubility. It is also found that not only is the nature of diffusion in a membrane 
different from an infinite or semiinfinite system, it also differs if the concen- 
tration profile is symmetric (as in sorption) from that when it is asymmetric (as 
in permeation). For polymers, it is seen that the elastic effects can modify the 
results, sometimes by an order of magnitude. 

This material is based upon work supported in part by the National Science Foundation under 
Grant No. CPE-8204313 and by Weldon Springs, University of Missouri. 

APPENDIX 

For small values of N E ~  one assumes a solution of the form 

C - C(O) + NEiC") + O ( L ~ $ [ )  

Substituting eq. (49) into eqs. (38)-(41), one has 
&(O) 7J2C(o) 
a7 a12 

C ( O ) I p * l  = C m  

-. = 

(49) 
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d{ <=o = O  

as NEI - 0. The solution is known asz6 

One may now proceed to obtain d1), which shall not be done here, for c(l) is in main part a correction 
to do) for the concentration dependence of the effective diffusion coefficient D[1 + NEic], as seen 
in eq. (35). Such effects from concentration dependence of the diffusivity holds little secrets or 
significant departures from the Fickian behavior.25 In fact, one may substitute an effective diffusivity 
D, in an appropriate way.25 The novelty here is the boundary condition (36) or (39). Substituting 
eqs. (49) and (51) into eq. (39), dividing with Nel and taking the limit N E ~  - 0, one has 

Substituting eq. (54) into eq. (55), one has 

A quantity of particular interest here is 

For large values of NEI, one chooses a series 

Substituting eq. (58) into eqs. (38)-(41), one has 

on taking the limit N E ~  - a. 
The solution is 

c(0) = a1(7) (63) 

(after dividing with 
where a1 is an unknown function of time 7.  

NE) where appropriate) one has 
Substituting eqs. (58)-(63) in eqs. (38)-(41) and taking the limit N E ~  - 

The solution is 
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where a2 is an unknown function of 7. Substituting into eq. (65) and simplifying, one has 

da l  3 ~ -  3a:: 
d7 co Cg 
- - -a1=--  

which is Bernoulli's equation. The solution subject to Eqs. (62) and (63) is 

From the nature of c(O), Eq. (69) represents the solubility to the first approximation. One also 
has the solubility expressed as 

Further, if ci = 0, c = cm at all times. 
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